Impedance Calcs, D. Shuman, 8/16/12

from http://www.daycounter.com/LabBook/Microstrip/Microstrip-Characteristic-Impedance.phtml

Microstrip Characteristic Impedance

There are two IPC documents which are frequently referenced for approximate microstrip and stripline impedance formulas:

The IPC-D-317A has been superseded by IPC-2251 which can be purchased from www.ansi.org for about \$110.

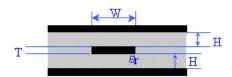
The IPC-D-317A formulas seem to be good for RF4 to about 5% but fall apart for other dielectric constants.

FR4 has an wildly varying dielectric constant from 4.5 to over 5.0.

For calculators using IPC-D-317A see http://www.emclab.umr.edu/pcbtlc/.

The default impedance calculations for Protel 2004 are based on IPC-D-317A.

Microstrip impedance formulas from IPC-D-317A:

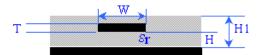

Embedded microstrip impedance formulas from IPC-D-317A:

Dimensions and materials

substrate polyimide dimensions
$$\epsilon_r \coloneqq 3.4 \qquad \qquad t \coloneqq 30 \mu m \qquad h \coloneqq 100 \mu m \qquad w \coloneqq 105 \mu m$$

Stripline:

Stripline impedance formulas from IPC-D-317A:



$$Z_{\mathcal{O}} = \frac{60}{\sqrt{\varepsilon_{r}}} ln \bigg(\frac{1.9 (\, 2H + T\,)}{0.8W + T} \bigg) \quad \text{ohms} \qquad C_{\mathcal{O}} = \frac{1.41 \, \varepsilon_{r}}{ln \bigg(\frac{3.81 H}{0.8W + T} \bigg)} \quad \text{pF/inch}$$

$$Z_{0_sl} := \frac{60}{\sqrt{\epsilon_r}} \cdot ln \left[\frac{1.9(2t+h)}{0.8w+t} \right] \qquad Z_{0_sl} = 31.916$$

Microstrip, embedded

Embedded microstrip impedance formulas from IPC-D-317A:

$$\mathcal{E}'_{r} = \mathcal{E}_{r} \left(1 - \exp \left(\frac{-1.55 H_{1}}{H} \right) \right) \qquad \qquad Z_{o} = \frac{56}{\sqrt{\mathcal{E}_{r}^{-1}}} \ln \left(\frac{5.98 H}{0.8 w + t} \right) \text{ ohm s}$$

coverlay thk
$$h_{cl} := 25 \mu m$$

$$h_1 := h + t + h_{cl}$$
 $h_1 = 155 \,\mu m$

$$\epsilon'_{r} := \epsilon_{r} \cdot \left(\frac{\frac{-1.55 \cdot h_{1}}{h}}{1 - e^{-h}} \right) \epsilon'_{r} = 3.092 \qquad Z_{0_ms} := \frac{56}{\sqrt{\epsilon'_{r}}} \cdot \ln \left(\frac{5.98h}{0.8w + t} \right) \qquad Z_{0_ms} = 52.78$$